

離散型機率分配-1

李水彬Shuipin 2023/10/25

離散型機率分配

- · 一致分配 (uniformly distribution)
- · 白努利分配 (Bernoulli distribution)
- · 二項分配 (binomial distribution)
- ・ 超幾何分配 (hyper-geometric distribution)
- ・ 幾何分配 (geometric distribution)
- · 卜瓦松分配 (Poisson distribution)

一致分配

假設群體中每一個數值 x_1, \cdots, x_N 被抽中的機率 相同,隨機變數X為抽中的數值,則X的機率分配為

$$f(x_i) = P(X = x_i) = rac{1}{N}$$

範例(骰子)

一個公平的骰子, 令X代表出現的點數, 其機率分配函數為

$$f(i) = P(X = i) = \frac{1}{6}, i = 1, \dots, 6$$

$$X(ullet)=1$$
,簡寫為 $X=1$, $X(ullet)=2$,簡寫為 $X=2$, $X(ullet)=3$,簡寫為 $X=3$, $X(ullet)=4$, 簡寫為 $X=4$, $X(ullet)=5$, 簡寫為 $X=5$, $X(ullet)=6$, 簡寫為 $X=6$ 。

範例(彩金)

一個公平的骰子, 令 X 代表出現的點數, 彩金 Y 為 X 的函數 $Y(\cite{oldsymbol{oldsymbol{oldsymbol{A}}}})=20, Y(\cite{oldsymbol{oldsymbol{oldsymbol{A}}}})=50, Y(\cite{oldsymbol{oldsymbol{oldsymbol{A}}}})=120, Y(\cite{oldsymbol{oldsymbol{oldsymbol{A}}}})=30, Y(\cite{oldsymbol{oldsymbol{oldsymbol{A}}}})=40, Y(\cite{oldsymbol{oldsymbol{oldsymbol{A}}}})=40, Y(\cite{oldsymbol{oldsymbol{oldsymbol{A}}}})=40, Y(\cite{oldsymbol{oldsymbol{A}}})=40, Y(\cite{oldsymbol{oldsymbol{A}}}})=40, Y(\cite{oldsymbol{A}}})=40, Y(\cite{oldsymbol{oldsymbol{A}}}})=40, Y(\cite{oldsymbol{oldsymbol{A}}}})=40, Y(\cite{oldsymbol{A}})=40, Y(\cite{oldsymbol{A}}})=40, Y(\cite{oldsymbol{A}})=40, Y(\cite{oldsymbol{A}}})=40, Y(\cite{oldsymbol{A}})=40, Y(\cite{oldsymbol{A}}})=40, Y(\cite{oldsymbol{A}})=40, Y($

$$y_1=20,y_2=50,y_3=120,y_4=30,y_5=40,y_6=40$$
 它的機率分配為

$$f(y_i)=rac{1}{6}, i=1,\cdots,6$$

與隨機變數X相同。

期望值與變異數

$$egin{array}{ll} E(X) &= \sum_{i=1}^N x_i f(x_i) = rac{\sum_{i=1}^N x_i}{N} \ Var(X) &= E(X-\mu)^2 = \sum_{i=1}^N (x_i-\mu)^2 f(x_i) = rac{\sum_{i=1}^N (x_i-\mu)^2}{N} \end{array}$$

就是一般母體平均數與變異數的計算公式。

範例(摸彩)

假設摸彩箱內有三顆彩球, 黃,紅和藍, 黃色可折價 20 元, 紅色彩球可折價 15 元, 藍色彩球可折價 10 元。令隨機變數 X 代表顧客折價金額, 請問 X 的期望值與變異數。

根據題意, X 的機率分配為

$$f(x)=rac{1}{3}, x=10, 15, 20$$
 $\mu=rac{10+15+20}{3}=15$ $\sigma^2=rac{(10-15)^2+(15-15)^2+(20-15)^2}{3}=rac{50}{3}$

範例(接續骰子)

擲一個公平的骰子, $\Rightarrow X$ 代表出現的點數, 請問 X 的期望值與變異數?

$$egin{array}{ll} E(X) &= rac{1+2+3+4+5+6}{6} = rac{21}{6} = 3.5 \ E(X^2) &= rac{1^2+2^2+3^2+4^2+5^2+6^2}{6} = rac{91}{6} \ Var(X) &= E(X^2) - \mu^2 = rac{91}{6} - (rac{21}{6})^2 \ &= rac{546-441}{36} = rac{105}{36} = rac{35}{12} \end{array}$$

範例(接續彩金)

彩金Y的可能值為

$$y_1 = 20, y_2 = 50, y_3 = 120, y_4 = 30, y_5 = 40, y_6 = 40, y_6 = 40$$

它的期望值為

$$E(Y) = \sum_{i=1}^6 y_i f(y_i) = \sum_{i=1}^6 (y_i imes rac{1}{6})$$
 $E(Y) = rac{20 + 50 + 120 + 30 + 40 + 40}{6} = rac{300}{6} = 50$

範例(接續彩金)

變異數(Variance)

Y(彩金)	20	50	120	30	40	40
離差	-30	0	70	-20	-10	-10
離差平方	900	0	4900	400	100	100

離差平方和為 6400, 故變異數為

$$\sigma^2 = Var(Y) = rac{6400}{6} = 1066.67$$

標準差為

$$\sigma = \sqrt{Var(Y)} = \sqrt{1066.67} = 32.66$$

練習

年終摸彩箱內有五張彩券,分別為500元,400元,200元和兩張100元。請問彩券的期望值、變異數和標準差分別為多少?

練習(解答)

期望值為

$$E(Y) = \frac{500 + 400 + 200 + 100 + 100}{5} = \frac{1300}{5} = 260$$

練習(解答)

Y(彩券)	500	400	200	100	100
離差	240	140	-60	-160	-160
離差平方	57600	19600	3600	25600	25600

離差平方和為 57600+ 19600+ 3600+ 25600+ 25600=132000, 故變異數為

$$\sigma^2 = Var(Y) = rac{132000}{5} = 26400$$

標準差為

$$\sigma = \sqrt{Var(Y)} = \sqrt{26400} = 162.48$$