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predict: [ 516 14 914 714 614 © 712 4 5 1 8 1 3 6 9 4 3 14 10
9]
true value: [ 516 14 914 716 614 © 712 3 5 115 1 3 6 4 4 3 14 1@
9]




AlexNet

o BY Cmglee - Own WOI’k, CC BY- Image: 224 (height) x 2;2.4 (width) x 3 (channels)
SA 4.0, Convolution with 11x11 kernel+4 stride:54x54x96
https://commons.wikimedia.org  ReLu

Pool with 3x3 max. kemel+2 stride: 26x26x96

Convolution with 5x5 kérnel+2 pad:26x26x256
' RelLu

Pool with 3x3 max. kernel+2stride: 12x12x256
Convolution with 3x3 kérnel+1 pad:12x12x384

J RelLu
Convolution with 3x3 kernel+1 pad:12x12x384
v Relu

Convolution with 3x3 kernel+1 pad:12x12x256

v Relu

Pool with 3x3 max. ke_rnel+2stride: 5x5x256

v flatten

Dense: 4096 fully connected neurons

v Rel.u, dropout p=0.5

Dense: 4096 fully connected neurons

' Rel.u, dropout p=0.5
Dense: 1000 fully connected neurons

OQutput: 1 of I:IOOO classes



from sklearn.model_selection import train_test_split
o # {FH train test split BREUFEHEE 73|58 ENBIGE

from sklearn.model selection import train test split
X train, X test, Y train, Y test = train test split(X, VY, test size=0.2, | random s

Colab Al
IS o] LA F R EESEURE S I A3 ISREEFTRIE
&, Flan, EeJLMER numpy E4HRY split BREL,

0 5 j@’}mﬁ_ﬂ,lﬁm pandas E{L'FEFHSI train test split E@a

import numpy as np

i LR B L El de BE AT H l_D IQ
X train, X test, Y train, Y test = np.split(data, [i lmport pandas i pd
e ]
Use code with caution i
Hh: X train, X test, Y train, Y test = pd.train test split(data,

. dare RO T ——
e X_train fedlSREERVIFEEE
o X test EHIETEER I HEE



from keras.preprocessing.image import ImageDataGenerator

[ ] 1 from keras. preprocessing. image import ImageDataGenerator

#t {FH ImageDataGenerator IE{TEIEIEIT
datagen = ImageDataGenerator (
horizontal flip=True, t AR
rotation range=30, t BEEH30E
# zca_whitening=False, # AT ZCA BHiLEH
# featurewise center=True # IETRFESE A O
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Keras Applications

Keras Applications are deep learning models that are made available alongside pre-trained weights.
These models can be used for prediction, feature extraction, and fine-tuning.

Weights are downloaded automatically when instantiating a model. They are stored at

~/.keras/models/.

Upon instantiation, the models will be built according to the image data format set in your Keras

configuration file at ~/.keras/keras.json. For instance, if you have set

image_data_format=channels_last, then any model loaded from this repository will get built according
to the TensorFlow data format convention, "Height-Width-Depth".

Available models

Time (ms) per | Time (ms) per

Size Top-1 Top-5 . (ms) p . (ms) p
Model Parameters Depth | inference step | inference step

(MB) | Accuracy| Accuracy

(CPU) (GPU)
Xception 88 79.0% 94.5% 22.9M 81 109.4 8.1
VGG16 528 71.3% 90.1% 138.4M 16 69.5 4.2
VGG19 549 71.3% 90.0% 143.7M 19 84.8 4.4
ResNet50 98 74.9% 92.1% 25.6M 107 58.2 4.6
ResNet50Vv2 98 76.0% 93.0% 25.6M 103 45.6 4.4




 VGGNetfE H3x3t4filer size » thfiler size >
DARIERE IR » e XX FRBEEF]L1~190RE
HH#PAVEge-16 ~ Vgg-19% K&4F - VGGNet#
2014#ILSVRCHy 2L BT £ 3| R E




Published as a conference paper at ICLR 2015

VERY DEEP CONVOLUTIONAL NETWORKS
FOR LARGE-SCALE IMAGE RECOGNITION

Karen Simonyan* & Andrew Zisserman”*
Visual Geometry Group, Department of Engineering Science, University of Oxford
{karen,az}@robots.ox.ac.uk

ABSTRACT

In this work we investigate the effect of the convolutional network depth on its
accuracy in the large-scale image recognition setting. Our main contribution is
a thorough evaluation of networks of increasing depth using an architecture with
very small (3 x 3) convolution filters, which shows that a significant improvement
on the prior-art configurations can be achieved by pushing the depth to 16-19
weight layers. These findings were the basis of our ImageNet Challenge 2014
submission, where our team secured the first and the second places in the localisa-
tion and classification tracks respectively. We also show that our representations
generalise well to other datasets, where they achieve state-of-the-art results. We
have made our two best-performing ConvNet models publicly available to facili-
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https://en.wikipedia.org/wiki/File:VGG_neural_network.png

224x224x%3

224x224x64

112x112x128

14x14x512

1x1x4096 1x1x4096 1x1x1000 1x1x1000




CNN#=A = A5 VGG

loss: 0.1476 — acc: 0.9999 — val loss: 0.0947 - val acc: 0.9706 — lr: 1. 1790e—06

Z4 RAM GPU RAM
loss: 0.1433 — acc: 0.9603 — val loss: 0.0957 — val acc: 0.9706 — lr: 1.1790e-06 6.2/12.7GB 13.7/15.0GB
loss: 0.1355 — acc: 0.9566 — val loss: 0.0904 - val acc: 0.9706 — 1r: 1.0611e-06
loss: 0.1818 — acc: 0.9507 — val loss: 0.0925 - val acc: 0.9706 — 1r: 1.0611e-06
oss: 0.1620 — acc: 0.9463 — val loss: 0.0928 - val acc: 0.9706 — 1r: 9. 5501e-07 27.1/78.2 GB

i 0.1636 — acc: 0.9375




https://keras.io/api/callbacks/reduce_Ir_on_plateau/

Reduce learning rate when a metric has stopped improving.

Models often benefit from reducing the learning rate by a factor of 2-10 once learning stagnates.
This callback monitors a quantity and if no improvement is seen for a 'patience' number of epochs,

the learning rate is reduced.

Example

reduce_1lr = ReduceLROnPlateau(monitor=‘val_loss', factor=6.2,
patience=5, min_lr=0.001)

model.fit(x_train, y_train, callbacks=[reduce_1lr])




FVGG V1 vs V2
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